
Am. J. Hum. Genet. 64:1464–1472, 1999

1464

Relationship Estimation by Markov-Process Models in a Sib-Pair Linkage
Study
Jane M. Olson
Department of Epidemiology and Biostatistics, Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve
University, Cleveland

Summary

The results of sib-pair linkage studies may be compro-
mised if a substantial number of putative sib pairs are
not actually sib pairs. For classification of pairs in a sib-
pair genome scan, I propose multipoint methods that
are based on a Markov-process model of allele sharing
along the chromosome. These methods can be imple-
mented by standard algorithms that compute multipoint
marker allele–sharing probabilities for sib pairs. When
marker data from at least half the genome are used,
misclassification rates are small. The methods will be
implemented in an upcoming version of the computer
software package S.A.G.E.

Introduction

Linkage studies, including those using affected relative
pairs, rely heavily on the assumption that the type of
relationship identified during pedigree collection is the
true genetic relationship between the two members of
the relative pair (Boehnke and Cox 1997; Goring and
Ott 1997). Genotyping of intervening relatives, such as
both parents of a sib pair, is an effective means of iden-
tification of incorrect relationships. In many linkage
studies, particularly those of late-onset diseases, parents
and other intervening relatives are not available for ge-
notyping, and probabilistic methods must be relied on.
Methods based on the observed numbers of marker al-
leles identical by state (IBS) have been proposed by sev-
eral authors (Chakraborty and Jin 1993a, 1993b; Ehm
and Wagner 1996; Stivers et al. 1996). More recently,
other authors have proposed likelihood-based methods
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of relationship estimation for affected-sib-pair studies
(Boehnke and Cox 1997; Goring and Ott 1997). These
methods are based on computation of the probability of
sets of marker data conditional on a given relationship.
Goring and Ott (1997) have focused on elimination of
false sib pairs from a sib-pair analysis, using a Bayesian
approach that incorporates prior probabilities for each
type of relationship. Boehnke and Cox (1997) have com-
puted a multipoint likelihood for each possible type of
relationship and then have formed likelihood ratios that
are used to classify pairs on the basis of type of
relationship.

In this study, I use Markov-process models to calculate
pair-specific statistics that estimate average genomewide
allele sharing, an idea that I first suggested in a earlier
report (Olson 1998). The primary focus is on classifi-
cation of putative sib pairs in a sib-pair linkage study
when parental marker genotypes are unavailable. Since
only one multipoint likelihood calculation is required,
the statistics used for classification are constructed from
multipoint sib-pair allele-sharing probabilities currently
available from standard algorithms (e.g., see Kruglyak
and Lander 1995; Idury and Elston 1997). As a result,
they can be incorporated easily into existing sib-pair
multipoint-linkage programs so that relationship esti-
mation can be made an automatic component of a ge-
nomewide sib-pair linkage study, with little or no
additional effort. Visual display of the relationship sta-
tistics in the form of histograms provides the researcher
an immediate sense of the types and numbers of rela-
tionships present in a set of putative sib pairs. Using
simulations, I show that a simple classification method
is extremely accurate when relationship estimation is
based on more than half the genome.

Methods and Results

I focus on the problem of classification of sib pairs,
half-sib pairs, unrelated pairs, MZ twin pairs, and par-
ent/offspring (P/O) pairs in a sample of putative sib pairs,
in the context of a genome scan. Let be the estimatedf̂jis

probability that sib pair j shares i marker alleles identical
by descent (IBD) at a location s on a chromosome of
length L cM. I assume, throughout this report, than these
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Figure 1 Example sample path. Dots indicate estimated multi-
point number of alleles shared IBD; rectangles indicate approximated
area.

allele-sharing probabilities are obtained by multipoint
methods. At location s, the estimated number of alleles
shared IBD by a sample of N sib pairs may be obtained
by

N

ˆ ˆX � (f � 2f ) .�s j1s j2s
j�1

If the marker is fully informative, then is the totalXs

number of alleles shared IBD in the sample, at location
s.

Feingold et al. (1993) proposed a Gaussian-process
model to describe the ideal (i.e., infinitely dense and fully
informative) process along the chromosome. For theXs

ideal process, consider the mean-sharing statistic Z �s

. For a large sample of randomly sam-1/2(X � N)/(N/2)s

pled sib pairs, the statistic has a mean of 0, a varianceZs

of 1, and an approximating Gaussian-process covariance
function of exp , where for sib pairs (Fein-(�bFtF) b � .04
gold et al. 1993). The parameter b is a function of the
recombination process and assumes that crossovers are
independent—that is, that there is no crossover
interference.

Now consider a single random sib pair j and let Zjs

be the mean-sharing statistic for a single pair ( ).N � 1
We wish to obtain a measure of the average number of
shared alleles over the entire genome. Let k �

index the human autosomes and let be the1,2, ) ,22 Lk

length, in centimorgans, of chromosome k. The statistic

Lk

1
Y � Z dsjk � jsLk

0

has expectation

Lk

1
E(Y ) � E(Z )ds � 0jk � jsLk

0

and variance

L Lk k

1
Var(Y ) � Cov(Z ,Z )drdsjk �� js jr2Lk

0 0

2 2
�bLk( )� � 1 � e (1)2bL (bL )k k

(Parzen 1962, pp. 78–86; Olson 1998). In the ideal case
of fully informative, infinitely dense markers, the statistic

is the difference between the proportions of the chro-Yjk

mosome sharing two and zero alleles IBD. More gen-
erally, it is the difference between the absolute areas

above and below the null mean (sharing of one allele
IBD), divided by the length of the chromosome.

If putative sib pair j is a true sib pair, then
has a standard normal distribution as1/2Y /[Var(Y )]jk jk

. In practice, the normal approximation is some-L r �k

what inadequate for single chromosomes of modest
length (see simulations below). A genomewide measure
is given by

1/2

22 22

Y � Y Var(Y ) , (2)� �j jk jk( )Z[ ]k�1 k�1

which is well approximated by a standard normal dis-
tribution (see simulations below). Similar measures may
be computed for any number of chromosomes. Since the
focus is on relationship estimation, I propose the esti-
mation of genomewide for each of sibY j � 1, ) ,Nj

pairs in the sample. The statistics can be obtained, inŶj

practice, by a standard algorithm (e.g., see Kruglyak and
Lander 1995; Idury and Elston 1997), to calculate mul-
tipoint allele sharing at equally spaced points throughout
the genome. For each chromosome, the absolute areas
above and below the estimated mean-corrected mean
allele-sharing curve can be approximated by rectangles
(fig. 1), then divided by the length of the chromosome,
which is equivalent to computation of

P

ˆ �Y � c 2 (X � 1) P , (3)�jk p Z[ ]p�1

where P is the number of points at which allele sharing
is computed and c is the distance between points. For
example, if marker allele–sharing estimates are available
at 1-cM intervals over a 150-cM chromosome, then

and .P � 151 c � 1



1466 Am. J. Hum. Genet. 64:1464–1472, 1999

Table 1

Empirical Mean, SD, and Two-Sided–Tail Probabilities for , for True Full SibsŶj

INTERMARKER DISTANCE

AND NO. OF CHROMOSOMES

Ŷj

Mean SD

For Two-Sided–Tail Probability �

.05 .01 .001

Ideal (AMIC � 1.000):a

1 �.0018 1.0004 .0450 .0032 .0000
5 �.0039 1.0071 .0515 .0101 .0008
10 �.0056 1.0086 .0512 .0101 .0015
22 �.0083 1.0022 .0501 .0098 .0011

10:
AMIC � .633; 5 alleles:

1 .0093 .9136 .0254 .0000 .0000
5 .0102 .9153 .0317 .0045 .0003
10 .0157 .9114 .0300 .0044 .0002
22 .0229 .9028 .0280 .0042 .0000

AMIC � .731; 10 alleles:
1 .0060 .9529 .0336 .0014 .0000
5 .0107 .9500 .0384 .0057 .0004
10 .0135 .9469 .0377 .0057 .0004
22 .0201 .9553 .0374 .0068 .0008

25:
AMIC � .417; 5 alleles:

1 .0037 .7647 .0076 .0000 .0000
5 .0083 .7625 .0088 .0004 .0000
10 .0117 .7615 .0104 .0006 .0000
22 .0174 .7615 .0088 .0004 .0000

AMIC � .526; 10 alleles:
1 .0037 .8451 .0154 .0000 .0000
5 .0083 .8478 .0199 .0013 .0001
10 .0117 .8514 .0217 .0020 .0000
22 .0174 .8553 .0228 .0024 .0000

a Infinitely dense and fully informative.

Classification of Sibs and Half-Sibs

I simulated genomic marker data for two types of
relative pairs: sibs and half-sibs. Each marker locus had
5 or 10 equally frequent alleles, and no crossover inter-
ference was assumed when the data were generated. Two
intermarker distances, 10 cM and 25 cM, were studied.
Each chromosome had length 150 cM, giving a total of
3,300 cM for 22 chromosomes. Each simulation con-
sisted of 220,000 chromosomes, which were then
grouped into sets of 1, 5, 10, or 22 chromosomes, so
that results were based on �10,000 replicates. Statistics

were computed by equations (2) and (3). During mul-Ŷj

tipoint calculation of allele-sharing, the Kosambi (1944)
map function was used to convert map distance to re-
combination fraction, so that robustness to incorrect in-
terference assumption could be partially assessed. One
simulation assuming an infinitely dense, fully informa-
tive map was also performed, to ensure performance of
the statistic in the ideal setting. For this simulation, re-
combinations along each chromosome were assumed to
follow a Poisson process, with a mean of 1 Morgan.
Allele sharing at the starting point was determined ran-
domly for the pair of chromosomes from the same par-

ent, and the lengths of segments shared and not shared
were determined on the basis of the locations of the
recombinations.

Before evaluating the ability of the method to correctly
classify pairs, I examined the accuracy of the normal
approximation. Table 1 gives the mean, SD, and two-
sided–tail probabilities of for simulations in which theŶj

true relationship is full sib. For the ideal marker map,
the standard normal distribution is a good approxi-
mation, except when only one chromosome is included.
For less informative marker maps, tail probabilities are
too small, especially for the sparsest, least informative
marker maps. The parameter b, which I take to be fixed
at a value of .04, actually depends on map density and
marker informativity, as well as on degree of interfer-
ence, the validity of the fixed marker map, and assumed
marker-allele frequencies. Teng and Siegmund (1998)
have shown that the covariance of the Gaussian process
increases as marker informativity decreases, so that the
variance of decreases. This effect can be observed inŶj

the present simulations, since the empirical SDs of areŶj

considerably !1. The number of chromosomes, which
is not related to marker informativity, does not affect
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Table 2

Characteristics of for Half-SibsŶj

INTERMARKER DISTANCE

AND NO. OF CHROMOSOMES

Ŷj

MINIMUM PROBABILITY

OF MISCLASSIFICATION AS

Mean SD OCV Half-Sibs Sibs Total

Ideal:a

1 �1.34 .71 �.61 .2708 .1507 .4215
5 �3.00 .71 �1.68 .0477 .0309 .0786
10 �4.25 .70 �2.44 .0078 .0052 .0130
22 �6.30 .71 �3.66 .0001 .0001 .0002

10:
5 Alleles:

1 �1.04 .59 �.45 .3037 .1442 .4480
5 �2.43 .59 �1.37 .0633 .0367 .1000
10 �3.44 .60 �2.00 .0128 .0079 .0207
22 �5.10 .60 �3.01 .0004 .0002 .0006

10 Alleles:
1 �1.19 .65 �.52 .2906 .1488 .4395
5 �2.65 .65 �1.48 .0565 .0350 .0915
10 �3.75 .65 �2.16 .0104 .0067 .0171
22 �5.57 .65 �3.25 .0003 .0002 .0005

25:
5 Alleles:

1 �.82 .55 �.40 .3388 .1827 .5215
5 �1.82 .55 �1.02 .0976 .0640 .1615
10 �2.58 .55 �1.47 .0282 .0193 .0476
22 �3.82 .55 �2.20 .0020 .0014 .0034

10 Alleles:
1 �.99 .59 �.50 .3012 .1589 .4601
5 �2.21 .59 �1.27 .0735 .0465 .1200
10 �3.13 .59 �1.82 .0173 .0113 .0286
22 �4.64 .59 �2.72 .0007 .0005 .0012

a Infinitely dense and fully informative.

the variance. Use of the incorrect interference assump-
tion gives a negligible positive bias in the mean of the
test statistic.

I then evaluated the ability of the statistics to accu-
rately classify sibs and half-sibs. Table 2 gives the mean
and SD of when the true relationship is half-sib. TheŶj

mean of the test distribution increases with decreasing
marker informativity and decreasing numbers of chro-
mosomes, so that overlap between the true-sib and half-
sib distributions increases as the amount of information
decreases. To provide guidelines for using in practice,Ŷj

I calculated the optimal classification value (OCV) for
each simulation, using the empirical means and SDs of
the two distributions and assuming normality and equal
proportions of sibs and half-sibs. I defined the OCV as
the value that minimizes the total misclassification; it is
also the value at which the two density functions are
equal. OCVs and misclassification probabilities are also
given in table 2. When the entire genome is used, mis-
classification is rare, if OCVs are used. The probability
of misclassification of a sib as a half-sib is higher than
that of misclassification of a half-sib as a sib, because
the sib distribution has a larger SD.

The OCVs vary considerably and increase with de-

creasing marker informativity. Using the results from
these simulations, I fitted a linear-regression model to
the logarithm of minus the OCV as a function of the
length, in centimorgans, of the genotyped genome, di-
vided by 150 (T) and average marker information con-
tent (AMIC) for true sib pairs. To compute AMIC, I
computed marker information content (Kruglyak and
Lander 1995) at 1-cM intervals throughout the genome
and averaged those values. I then averaged these AMIC
values over 10 replicate genomes; the SD of AMIC values
was ∼.01, indicating that there is little variability in
AMIC over replicates. The resulting AMIC values are
shown in table 1. The best-fit regression model,

log (�OCV) � �.141 � .524 log T10 10

2� .237 log AMIC � .861 (log AMIC) , (4)10 10

accounted for 99.9% of the variance of log10(�OCV).
When this regression equation is used to obtain classi-
fication values a priori, it is important to use the Krug-
lyak and Lander (1995) algorithm to obtain AMIC.
(Note that T actually equals the number of 150-cM chro-
mosomes used in the simulations and was convenient
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Table 3

Characteristics of for Unrelated IndividualsŶj

INTERMARKER DISTANCE

AND NO. OF CHROMOSOMES

Ŷj

MINIMUM PROBABILITY

OF MISCLASSIFICATION AS

Mean SD OCV Unrelated Half-Sibs Total

10; 10 alleles:
1 �2.24 .25 �1.82 .1669 .0458 .2127
5 �5.01 .25 �4.29 .0058 .0020 .0078
10 �7.08 .25 �6.11 .0001 .0001 .0002
22 �10.50 .25 �9.10 .0000 .0000 .0000

25; 5 alleles:
1 �1.42 .46 �1.07 .3228 .2253 .5481
5 �3.17 .46 �2.52 .1010 .0794 .1804
10 �4.48 .46 �3.59 .0330 .0266 .0597
22 �6.64 .46 �5.34 .0029 .0024 .0052

for obtaining the regression equation. Taking T to be
the total length of the genotyped genome divided by 150
allows use of the regression equation in practice.)

Unrelated Individuals and MZ Twins

The simulations were repeated for true unrelated
pairs. Results are shown in table 3, for only the most
and least informative marker maps. Using all simula-
tions, not just those shown in table 3, I determined the
OCVs and fitted a regression equation:

log (�OCV) � .421 � .506 log T10 10

2�1.162 log AMIC � .472 (log AMIC) . (5)10 10

This regression equation explained 99.9% of the vari-
ance in log10(�OCV). This OCV differentiates between
unrelated individuals and half-sibs (not sibs), but only
when is computed under the assumption that a siblingŶj

relationship exists. In other words, no recalculation of
allele sharing or of is required.Ŷj

For MZ twins (or, in practice, duplicate DNA sam-
ples), shows little variability and 100% power, pro-Ŷj

vided that at least five chromosomes are included and
the classification criterion is �∼3. In this case, OCVs
need not be computed; it suffices to set the classification
value at 3.27, corresponding to a probability of �.0005
that a true sib will be declared an MZ twin (regardless
of the number of chromosomes included), so that vir-
tually no MZ twins will be declared true sibs (provided
that no fewer than five chromosomes are used).

P/O Pairs

P/O pairs are always expected to share exactly one
allele IBD, so that cannot be used to discriminateŶj

between sib pairs and P/O pairs. Because such mistakes
can occur in real data if blood samples are mislabeled,
I provide a second Markov-process statistic to detect P/
O pairs. For chromosomal location s, use

N

ˆ ˆ ˆ∗X � (f � f � f ) . (6)�s j2s j0s j1s
j�1

For a fully informative location s, the Gaussian-process
statistic

N ∗Xs∗Z � �s 1

j�1 2N

has a standard normal distribution in a large sample of
sib pairs, with covariance function exp , where(�bFtF)
now . Now consider a single sib pair. Integratingb � .08
over the genome in the same manner as has been used
above, we obtain a new statistic, , which compares∗Yj

the proportion of the genome sharing one allele IBD
versus the proportion sharing zero or two alleles IBD.
For a true sib pair, has an expected mean of 0 and∗Yj

a variance of 1.
I simulated sib pairs and P/O pairs to test the per-

formance of . For true sib pairs, the empirical type I∗Ŷj

error rates were close to the nominal values of .05, .01,
and .001, indicating that the normal approximation is
excellent, provided that more than one chromosome is
included (not shown). For true P/O pairs, table 4 shows
results for the most (after the ideal) and least informative
marker maps. For the ideal map, has a variance of∗Ŷj

0 when applied to P/O pairs, and so it is not useful for
determination of the OCV. The OCV needed for a par-
ticular data set can be determined by

log (�OCV) � .475 � .518 log T10 10

�2.220 log AMIC , (7)10

the best-fitting regression model for differentiation be-
tween sib pairs and P/O pairs. It explained 99.8% of
the variance of log10(�OCV); addition of quadratic
terms did not increase the percentage of explained
variation.



Olson: Relationship Estimation and Sib-Pair Linkage 1469

Table 4

Characteristics of for P/O Pairs∗Yj

INTERMARKER DISTANCE

AND NO. OF CHROMOSOMES

∗Yj

MINIMUM PROBABILITY

OF MISCLASSIFICATION AS

Mean SD OCV Sibs P/O Total

10; 10 alleles:
1 �1.91 .201 �1.43 .0085 .0483 .0568
5 �4.28 .201 �3.42 .0000 .0000 .0000
10 �6.05 .201 �4.87 .0000 .0000 .0000
22 �8.98 .201 �7.27 .0000 .0000 .0000

25; 5 alleles:
1 �.68 .251 �.33 .0836 .2518 .3355
5 �1.52 .252 �.95 .0125 .0297 .0422
10 �2.15 .251 �1.39 .0014 .0031 .0044
22 �3.18 .254 �2.09 .0000 .0000 .0000

Strategy for Classification of Sib Pairs and Nonsib Pairs

Below, I suggest an algorithm for use of and to∗ˆ ˆY Yj j

classify pairs in a sib-pair linkage study. As part of the
analysis, I recommend visual examination of histograms
of and . One of the advantages of the Markov∗ˆ ˆY Yj j

approach is that histograms of the Markov statistics pro-
vide the linkage analyst with an immediate sense of the
nature and extent of the nonsib problem in a particular
data set. These histograms also can be used informally
to ensure that the formal algorithm gives sensible results,
to adjust classification values if desired, or to decide on
the classification method. For example, if the half-sib
and sib distributions overlap substantially and the pro-
portion of half-sib pairs appears to be nontrivial, then
a Bayesian approach may be preferred. Conversely, ex-
amination of the histograms may reveal that little, if any,
formal testing is necessary; if the sib and half-sib dis-
tributions appear to be completely separate, then ago-
nizing over choice of method or classification value is
unnecessary.

In practice, OCVs can be obtained automatically in
the course of the multipoint calculation, by saving both
the information content for the total data set and the
pair-specific allele-sharing probabilities at each point on
the marker map. AMIC is computed by averaging the
information content over the map. In real data sets, in
which most nonsibs are half-sibs or unrelated individ-
uals, AMIC will be overestimated, since it is computed
under the assumption that all putative sib pairs are true
sib pairs. In sets of putative DZ twins, AMIC will usually
be underestimated, if most nonsibs are MZ twins. In
reality, AMIC depends on both the true relationship and
the assumed relationship. However, the investigator will
not know, prior to relationship estimation, which pairs
are true sibs. For the classification strategy to be effec-
tive, it is necessary that the misclassification rates not be
too sensitive to misspecification of the OCV. A summary
of the procedure is as follows:

1. Obtain the AMIC from the existing data by cal-
culating the Kruglyak and Lander (1995) marker infor-
mation content at 1-cM intervals throughout the genome
and then averaging these values. Obtain T by dividing
the total length, in centimorgans, of the (genotyped) ge-
nome by 150.

2. Use T and AMIC and the regression equations (4),
(5), and (7) to obtain the OCVs. Put the OCV for MZ
twins equal to 3.27.

3. For each pair, compute the multipoint allele-sharing
probabilities at equally spaced points throughout the
genome, using a standard multipoint algorithm. Use
equations (1)–(3) to obtain , the estimate of . AlsoŶ Yj j

compute , using equations (1) (after putting ),∗Ŷ b � .08j

(2), and (6).
4. Classify each pair, using the classification values

obtained in step 2. When is used, each pair will fallŶj

into one of four mutually exclusive categories: unrelated,
half-sib, sib, and MZ twin.

5. For each pair classified as a sib in step 4, reclassify
as sib or P/O pair, using .∗Ŷj

I tested this strategy by using a simulated data set with
10,000 sib pairs, a random 10% of which were actually
half-sib pairs. All putative parents were untyped. To
make the data more realistic, I used an 11-marker map
for each chromosome, with varying intermarker dis-
tances (10–20 cM, mean 15 cM) and varying numbers
of equally frequent alleles (3–10, mean 5.5). The esti-
mated value of AMIC when all the pairs were used was
.587; when only sib pairs were use, it was .521. When
the estimated classification values were used, the total
misclassification rates were .1265, .0329, and .0018 for
5, 10, and 22 chromosomes, respectively, which compare
favorably to the optimal total misclassification rates of
.1213, .0250, and .0011, respectively.

I then simulated a data set with 10,000 relative pairs,
randomly choosing 10% to be half-sib pairs, 10% to be
unrelateds, 10% to be MZ twins, 10% to be P/O pairs,
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Table 5

Classification Proportions for 10,000 Putative Sib Pairs

NO. OF CHROMOSOMES

AND TYPE OF CLASSIFICATION

PROPORTION IN WHICH TRUE RELATIONSHIP IS

Sib Half-Sib Unrelated MZ Twin Parent

5:a

Sib .9178 .0462 .0000 .0000 .0251
Half-sib .0787 .8541 .0186 .0000 .0000
Unrelated .0000 .0997 .9814 .0000 .0000
MZ twin .0002 .0000 .0000 1.0000 .0000
Parent .0033 .0000 .0000 .0000 .9749

10:b

Sib .9757 .0052 .0000 .0000 .0048
Half-sib .0241 .9906 .0049 .0000 .0000
Unrelated .0000 .0042 .9951 .0000 .0000
MZ twin .0002 .0000 .0000 1.0000 .0000
Parent .0000 .0000 .0000 .0000 .9952

22:c

Sib .9988 .0000 .0000 .0000 .0000
Half-sib .0012 1.0000 .0000 .0000 .0000
Unrelated .0000 .0000 1.0000 .0000 .0000
MZ twin .0000 .0000 .0000 1.0000 .0000
Parent .0000 .0000 .0000 .0000 1.0000

a Estimated OCV values are as follows: unrelated (�3.12) half-sib (�1.25) sib (3.27)
MZ twin; parent (�1.71) sib.

b Estimated OCV values are as follows: unrelated (�4.43) half-sib (�1.80) sib (3.27)
MZ twin; parent (�2.45) sib.

c Estimated OCV values are as follows: unrelated (�6.60) half-sib (�2.72) sib (3.27)
MZ twin; parent (�3.69) sib.

and the remaining 60% to be true sib pairs. Again, all
putative parents were untyped, and the same marker
map was used. This data set contains an unusually high
number of nonsib pairs. Genotyping error was included
by changing a random 1% of the alleles before multi-
point computation. Inclusion of genotyping error intro-
duces a downward bias in the relationship statistics for
all relationships, since true mean allele sharing is un-
derestimated. For this data set, AMIC was estimated to
be .535, which is close to the sib-pair value of .521.
The classification results are given in table 5, and his-
tograms of the and values are given in figure 2.∗ˆ ˆY Yj j

When either 10 chromosomes or the entire genome was
used, few pairs were misclassified, and the corresponding
histograms show that the types of pairs are easily
distinguished.

When five chromosomes were used, misclassification
rates were larger, as anticipated. There is substantial
overlap of the distributions, and the classification
method is more sensitive to choice of cut point. In ad-
dition, because the classification value that distinguishes
half-sibs and sibs is high, the sib distribution is truncated
in the lower tail, which will lead to an increase in the
false-positive rate of linkage results if only the pairs clas-
sified as sib pairs are included in the subsequent linkage
analysis. If the goal of relationship estimation is to elim-
inate nonsib pairs from the data set, then methods that
incorporate prior probabilities will be more appropriate
if substantially less than half of the genome is genotyped.

I performed relationship testing on a set of 49 sib pairs
affected with intracranial aneurysm (Ronkainen et al.
1997). Markers were genotyped at ∼10-cM intervals
(Weber screening set 8) throughout the genome, and sta-
tistics and were calculated. Of the values, 1 was∗ˆ ˆ ˆY Y Yj j j

�4.35, 1 was �2.83, 6 were between �2.5 and �1.0,
35 between �1.0 and 1.0, 6 were between 1.0 and 2.5,
and 0 were 12.5. The OCV for sibs and half-sibs was
calculated to be ∼�3.46, so that one putative sib pair
( ) was classified as a half-sib pair. The pu-Ŷ � �4.35j

tative sib pair with was classified as a trueŶ � �2.83j

sib pair. This pair was a member of a sib trio with pair-
wise equal to �2.83 (pair 1-2), 1.48 (pair 2-3), andŶj

�.82 (pair 1-3). Viewed together, these pairwise results
indicate that the three offspring are indeed sibs. valuesŶj

were also calculated for four putative half-sib pairs,
yielding values of �4.57, �4.30, �5.12, and �4.83,
confirming these half-sib relationships. No pairs were
classified as P/O pairs, unrelated pairs, or MZ twins.
The same classifications were obtained by the Boehnke
and Cox (1997) method.

Discussion

I have proposed methods for estimation of relation-
ships in sib-pair studies that are based on Markov-pro-
cess models and that may be viewed as multipoint IBD
extensions of methods that average identity-by-state
(IBS) or IBD results of individual markers (e.g., see
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Figure 2 Histograms of Markov-process statistics: (left) and (right). From top to bottom, histograms contain results for 5, 10, and∗ˆ ˆY Yj j

22 chromosomes, respectively. For histograms on the right, only sib pairs and P/O pairs are included.

Chakraborty and Jin 1993b; Ehm and Wagner 1996).
The methods use multipoint IBD calculations and are
extremely powerful when genomewide autosomal
marker data are available. The new methods require only
one multipoint calculation per pedigree and thus save
time compared with likelihood-ratio comparisons, such
as those used by Boehnke and Cox (1997). In addition,
the new methods can detect MZ twins (or duplicate
samples) even if the possibility of genotyping error is not
allowed in the multipoint calculations. A relative pair
with different observed genotypes at even one marker
will always be formally excluded as MZ twins when the
likelihood-ratio method is used, unless more-compli-
cated and time-consuming algorithms that allow for ge-
notyping error are used (Boehnke and Cox 1997). Al-
though the emphasis of the present study is on
classification, the proposed statistics can be used to test
the null hypothesis—that the pair is a sib pair—against
the general alternative—that the pair is not a sib pair—if
simply eliminating all nonsib pairs from the data set is
the only goal. Another advantage is that a histogram of
the relationship statistics gives the user a visual display
that can be used as an exploratory tool or to confirm
the classification results.

Their primary disadvantage is that the optimal clas-
sification criteria are functions of the informativity of

the marker map and the amount of typed genome and
thus depend on the particular marker set and population
under study. However, I have shown, using simulations,
that useful classification criteria can be chosen in parallel
with computation of the statistics themselves, so that
little or no extra effort is required. When more that half
the genome is genotyped, misclassification is rare; when
less than half of the genome is genotyped, then Bayesian
methods may be preferred (e.g., see Goring and Ott
1997), particularly if detection of nonsib pairs is the
goal. Alternatively, if the prior probability of nonsib
pairs is small, then the distribution can simply beŶj

truncated at the extreme tail. For example, if 1% of pairs
are expected to be half-sib pairs, then the lower 1% of
the might be discarded. Severe asymmetric truncationŶj

of the sib distribution should be avoided, to avoidŶj

inflation of the number of false-positive linkage results.
As with all current methods of testing or classifying

genetic relationships, the new methods are slightly biased
in an affected-sib-pair study, since affected sib pairs are
chosen for their presumed increased allele sharing at dis-
ease loci. In the context of a genome scan, this bias is
small (Goring and Ott 1997). Calculations using the
results of Feingold et al. (1993) show that the bias is
negligible for relationship testing unless many trait loci,
each with large effect, are present. To illustrate, assume
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that five disease loci, each in the middle of a different
chromosome and each giving a mean allele-sharing pro-
portion of .6 at the location of a disease locus, contribute
to a disease and that the variance of the is .8. ThenŶj

. If each of these five loci gives a mean allele-ˆE(Y ) � .018j

sharing proportion of 1, requiring that each locus be
recessive and that each affected individual carry the
disease homozygote at all five loci, then .ˆE(Y ) � .09j

Such extreme cases are unlikely to occur in practice. For
the vast majority of complex diseases, relationship test-
ing under the assumption of random sampling of pairs
and based on genomewide marker data can be safely
performed.

The new methods of evaluation of genetic relationship
will be implemented into the S.A.G.E. (version 4.0) com-
puter software package. I recommend use of the entire
genome, whenever possible, to classify relationships. At
a minimum, using half the genome should guarantee a
misclassification rate of �5%. Relationship estimation
using small numbers of markers/chromosomes have high
rates of misclassification and can discard large numbers
of true sib pairs, particularly if prior probabilities are
not taken into account. In theory, classification values
that incorporate prior probabilities could be developed
by standard approaches (e.g., see Johnson and Wichern
1998); for example, to classify sibs (s) and half-sibs (h)
on the basis of their respective prior probabilities andps

, one could compare with , where andˆ ˆp p f (Y ) p f (Y ) fh s s j h h j s

are the (normal) density functions of , where pairsˆf Yh j

are assumed to be sibs and half-sibs, respectively. The
procedure could be modified further, to incorporate costs
of misclassification. The means and variances of these
densities depend on AMIC and T and could be obtained
by regression formulas similar to those used to get OCV.
Regardless of the method used to classify pairs, the abil-
ity to accurately distinguish sibs from half-sibs worsens
faster, as the number of markers decreases, than the abil-
ity to accurately distinguish sibs from MZ twins, P/O
pairs, or unrelated pairs. If the goal of relationship test-
ing is to eliminate nonsib pairs, then a genomewide over-
all increase in allele sharing, as well as in false-positive
evidence for linkage, can result if a large proportion of
true sibs who happen by chance to share fewer alleles
than expected genomewide are excluded from the data
set.
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